Interpolation of Shifted-Lacunary Polynomials
نویسندگان
چکیده
منابع مشابه
Interpolation of Shifted-Lacunary Polynomials [Extended Abstract]
Given a “black box” function to evaluate an unknown rational polynomial f ∈ Q[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity t ∈ Z>0, the shift α ∈ Q, the exponents 0 ≤ e1 < e2 < · · · < et, and the coefficients c1, . . . , ct ∈ Q \ {0} such that f (x) = c1(x − α)1 + c2(...
متن کاملFactoring bivariate sparse (lacunary) polynomials
We present a deterministic algorithm for computing all irreducible factors of degree ≤ d of a given bivariate polynomial f ∈ K[x, y] over an algebraic number field K and their multiplicities, whose running time is polynomial in the bit length of the sparse encoding of the input and in d . Moreover, we show that the factors over Q of degree ≤ d which are not binomials can also be computed in tim...
متن کاملDivisibility Test for Lacunary Polynomials
Given two lacunary (i.e. sparsely-represented) polynomials with integer coefficients, we consider the decision problem of determining whether one polynomial divides the other. In the manner of Plaisted [6], we call this problem 2SparsePolyDivis. More than twenty years ago, Plaisted identified as an open problem the question of whether 2SparsePolyDivis is in P [7]. Some progress has been made si...
متن کاملShifted Linear Interpolation Filter
Linear interpolation has been adapted in many signal and image processing applications due to its simple implementation and low computational cost. In standard linear interpolation the kernel is the second order B-spline 2 β t . In this work we show that the interpolation error can be remarkably diminished by using the time-shifted B-spline 2 β t Δ as an interpolation kernel. We verify ...
متن کاملIrreducibility testing of lacunary 0, 1-polynomials
A reciprocal polynomial g(x) ∈ Z[x] is such that g(0) 6= 0 and if g(α) = 0 then g(1/α) = 0. The non-reciprocal part of a monic polynomial f(x) ∈ Z[x] is f(x) divided by the product of its irreducible monic reciprocal factors (to their multiplicity). This paper presents an algorithm for testing the irreducibility of the nonreciprocal part of a 0, 1-polynomial (a polynomial having each coefficien...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: computational complexity
سال: 2010
ISSN: 1016-3328,1420-8954
DOI: 10.1007/s00037-010-0294-0